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A B S T R A C T   

Background and objective: In many real-world scenarios, including the blood smear domain, it is difficult for 
detection networks to achieve good performance because image annotation is usually time consuming and 
expensive. To address this issue, similarity-based distillation (SD) methods, considered the soft version of 
contrastive learning, are applied to learn a better visual representation without requiring any supervision of the 
downstream task. Motivated by our theoretical analysis, we treat standard SD methods as the maximization of 
common 1-hop neighboring key points between two queries in an attributed graph, where nodes represent query 
and key data points. However, such first-order graph heuristic methods that calculate the likelihood of an unseen 
link between target nodes by using up to 1-hop neighborhoods are normally limited by insufficient represen-
tation power and even lack of generalization ability. 
Methods: Therefore, in this paper, we propose a novel higher-order heuristic distillation (H2D) method that 
distills knowledge about more general and powerful higher-order heuristic features based on a more than 1-hop 
relationship in the attributed graph. To do this, we utilize a graph neural network model to learn the higher-order 
heuristic features on the attributed graph constructed by query and key data representations and transfer the 
knowledge from the teacher to the student encoder. 
Results: Our method outperforms the previous state-of-the-art SD methods in the cell detection task on the blood 
smear dataset as well on open databases (Pascal VOC and MS COCO). Conclusions: Our proposed model allow 
teacher encoder to transfer the knowledge about more general and powerful higher-order heuristic embeddings 
to the student and enables better learning for visual representation on cell detection task using blood smear 
images.   

1. Introduction 

Lymphomas are the most common hematologic malignancies 
worldwide (Siegel et al., 2021). Lymphoma could be further classified 
into plenty of distinct subtypes, which exhibit marked diversity in bio-
logical behavior and clinical outcomes (Swerdlow et al., 2016). For 
diagnosis of lymphomas, immunophenotyping, cytogenetics, molecular 
pathology results, and clinical features are needed in finalizing the 
diagnosis in lymphoma types (Swerdlow et al., 2016). Due to subtle 
differences in cell morphology between normal reactive lymphocytes 
and abnormal lymphocytes of various types of lymphomas, it is difficult 
to diagnose lymphoma by morphologic investigation using conventional 
microscope. Recently, rapid progress in digital imaging and deep 

learning-based diagnostic systems have made possible the development 
of automatic methods for digital image processing of blood cells (Kratz 
et al., 2019). Digital morphology analyzers can preclassify most of the 
normal blood cells in peripheral blood (PB) and rapidly being imple-
mented routinely in diagnostic laboratories. However, it is still mainly 
used for differentiating the types of normal blood cells in PB, but it is still 
challenging to diagnose hematologic malignancies (Kratz et al., 2019). 
For diagnosing hematologic malignancy, there have been studies to di-
agnose leukemia using PB blood cell images, but there have been no 
studies on lymphoma (Boldú et al., 2021; Rehman et al., 2018). Despite 
the diagnosis of lymphoma in its early stages and the first smears can 
lead to immediate diagnosis and the quick initiation of the treatment, it 
is challenging to build a practically applicable deep learning-based 
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model for diagnosing lymphoma with PB images due to several draw-
backs. Firstly, prediction accuracy of the diagnostic model depends 
highly on quality and amount of training image samples. However, 
variations in manual microscopy skills among the scientists and cell 
staining methods require plenty of training data (Kratz et al., 2019). 
Different staining methods may result in data heterogeneity that reduces 
sensitivity in diagnosing hematologic malignancy, by varying morpho-
logical features such as texture and color of individual PB cell images. 
Secondly, imbalanced incidence rate of different lymphomas limits 
generalization ability of the diagnostic model. For example, Meintker 
et al. performed an analysis of comparing 4 different hematology ana-
lyzers for several cell types except for basophils, which have very low 
percentage (lower than 0.2 %) (Meintker et al., 2013). It is known that 
the low number of these cells present in the samples can lead to 
imprecise prediction results in cell detection tasks (Kratz et al., 2019). 
Lastly, the diagnosis of specific subtypes is a challenging problem 
because they are non-discriminant as they share morphological char-
acteristics. For example, when chromatin does not reveal typical clum-
ped pattern in PB cell analysis, it is difficult to diagnosis the cell with 
chronic lymphocytic leukemia. Similarly, there remain ambiguities 
when discriminating between reactive lymphocyte and monocyte, or 
reactive atypical lymphocyte and lymphoma in laboratory. 

With the rapid development of deep convolution neural networks, 
object detection models have been employed for analyses in many bio-
logical imaging applications (Chandradevan et al., 2020; Wang et al., 
2022; Yu et al., 2019; Ji, 2023; Dong et al., 2023, 2022a, 2022b). 
However, the training of these models is typically hindered by a lack of 
well-annotated datasets, which are developed involving laborious and 
costly processes (Arruda et al., 2019). Moreover, class-imbalanced data, 
which usually have a long-tail distribution, cause the detection models 
to under-represent the data owing to the large number of tail classes; this 
inevitably and negatively impacts the training results (Wang et al., 
2021). A potential way to alleviate this issue is to use unsupervised 
learning, which involves constructing an effective representation based 
on unlabeled data (Chen et al., 2020; He et al., 2020). Among the many 
different training methods based on unsupervised learning, we can view 
the most mainstream approach as contrastive learning, which exhibits 
promising results (Chen et al., 2020). Although this enables the model to 
learn useful representations without human supervision, careful treat-
ment of negative pairs is necessary because they may be from the same 
class category as the positive pair (Grill et al., 2020). In such a scenario, 
the resulting representation can become far worse by forcing the model 
to increase the distance between many negative pairs from the same 
class category (Grill et al., 2020; Tejankar et al., 2021). In particular, an 
imbalanced cell class distribution in PB analysis further deteriorates the 
problem, which limits the application of contrastive learning methods to 
real-world datasets (Tejankar et al., 2021). A recently proposed 
similarity-based distillation (SD) approach mitigates this issue by 
relaxing the binary distinction of the contrastive learning framework 
with soft labeling (Tejankar et al., 2021). By optimizing the student 
encoder to replicate similarity distribution in the embedding space, 
these methods aim to transfer the knowledge from the teacher encoder 
in terms of the distributions between the query point and the other 
anchor (key) points (Abbasi Koohpayegani et al., 2020; Fang et al., 
2021). Thus, the SD methods rely on the agreement between the simi-
larity distribution from the teacher and the student, which makes the 
student encoder learn the visual representation by maximizing common 
neighboring key points between two query points. 

Based on our theoretical results, we investigate the inherent mech-
anisms of the SD method and conclude that they result in a lack of 
expressive power of the learned visual representations. When assuming 
an attributed graph with unseen edges where nodes represent a set of 
query and key points, the SD method should be considered as a soft 
version of Common-Neighbors (CN), which measure the score of the 
unseen ‘link’ between the nodes based on the number of overlapped one- 
hop neighbors (Barabási & Albert, 1999; Zhang & Chen, 2018). Under 

the assumption that the query points (nodes) have an inherent link in the 
attributed graph, the student encoder is trained to embed visual repre-
sentations that maximize the CN heuristic score between two query 
nodes by applying standard SD methods. However, it is shown that 
higher-order heuristic methods that can be obtained by considering 
more than one-hop relationships are more informative for link predic-
tion, suggesting that the SD-based mechanism where the teacher 
transfers more informative knowledge using higher-order heuristics 
benefits more than the standard SD methods (Yun et al., 2021). 
Furthermore, predefined structural features, such as CN heuristics, lack 
the ability to express general graph structural features underlying 
different domains (Zhang & Chen, 2018; Yun et al., 2021). 

To address these issues, we propose a novel higher-order heuristic- 
based distillation (H2D) method. In our mechanism, more general and 
informative higher-order heuristic features are learned by utilizing a 
graph neural network (GNN)-based model on an attributed graph con-
sisting of query and key data points. Then, we train the student encoder 
by optimizing the agreement loss between the higher-order heuristic 
features from the two query nodes (points). We first perform an analysis 
using the faster R-CNN detector (Ren et al., 2015) with ResNet-50 as the 
backbone encoder on our local blood smear image dataset to evaluate 
our H2D for the cell detection task. Compared with the ordinary case of 
SD methods for image classification, we utilize a weakly supervised 
learning framework by defining ‘tuple’ as the input data sample to adapt 
to the object detection task (see Fig. 1). Our proposed model does not 
require any class information for bounding box annotating, enhancing 
generalizability of the model by making it easier to collect more training 
data. Thus, we expect that our model can alleviate the drawbacks of 
deep learning based PB image analysis (e.g., a lack of dataset, rare 
incidence rate, non-distinguishable class patterns). Moreover, we also 
evaluate our model trained with our H2D method using the widely used 
MS COCO (Lin et al., 2014) dataset by fine-tuning the model on the 
Pascal-VOC dataset (Everingham et al., 2010) to further assess gener-
ality. In summary, the key contributions of this paper are as follows: (1) 
We develop a theory unifying the CN heuristic method in graph link 
prediction tasks and the similarity-based distillation learning mecha-
nism to address insufficient visual representation learning. (2) We pre-
sent a new representation-learning framework, namely H2D, using more 
informative and general features based on the attributed graph, which 
consists of query and key data points to transfer that knowledge to the 
student. (3) We demonstrate that H2D outperforms recent 
state-of-the-art visual representation learning methods on our local 
blood smear dataset. H2D also outperforms the benchmarks in experi-
ments using the MS COCO and Pascal VOC datasets. 

2. Related works 

2.1. Similarity-based distillation 

SD aims to transfer knowledge from a teacher to a student in various 
ways. The objective of contrastive learning-based approaches such as 
MOCO (He et al., 2020) and SimCLR (Chen et al., 2020) can be 
considered as a special case of SD (Tejankar et al., 2021). Instead of 
assigning a soft label (similarity value) to the negative samples, they 
treated all key data points strictly as negative and generated a one-hot 
vector. In SEED (Fang et al., 2021) and Compress (Abbasi Koohpaye-
gani et al., 2020), knowledge is extracted by a large and freezing teacher 
network and transferred to a small student. ISD (Tejankar et al., 2021) 
iteratively distills a slowly evolving teacher to a student with 
similarity-based knowledge by applying the momentum update frame-
work. In the case of BYOL (Grill et al., 2020), the objective was to learn a 
visual representation by training a student to predict the teacher’s 
embedding vector from an augmented view of the same image. 
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2.2. Link prediction and graph-based heuristics 

Link prediction is a key problem in graph-structured data; it predicts 
the likelihood of unseen links between nodes in the graph and has many 
applications such as recommendation systems (Li et al., 2014), knowl-
edge graph completion (Kazemi & Poole, 2018), and graph reconstruc-
tion (Oyetunde et al., 2017). Diverse heuristic methods that compute 
score functions to measure the likelihood of links based on structural 
information have been widely used (Yun et al., 2021). Link prediction 
heuristic methods can be categorized based on the range of neighboring 
nodes required to calculate link scores (Zhang & Chen, 2018). First- and 
second-order heuristic methods involve one- or two-hop neighborhood 
nodes, respectively. For example, the CN and preferential attachment 
(Barabási & Albert, 1999) methods calculate the score using overlapped 
one-hop neighborhood nodes. Adamic-Adar (Adamic & Adar, 2003) and 
resource allocation (Zhou et al., 2009) require knowledge of up to 
two-hop neighborhood nodes. Conventionally, higher-order heuristic 
methods such as the Katz index (Katz, 1953), PageRank (Brin & Page, 
1998), and SimRank (Jeh & Widom, 2002) methods, which consider 
more than two-hop neighborhoods (usually up to the entire network), 
have shown significant improvements over first- and second-order 
heuristic methods for link prediction (Zhang & Chen, 2018). 

2.3. Learning structural features of graph 

In addition to heuristic-based methods, embedding-based methods 
that automatically learn more general and powerful higher-order fea-
tures have been studied to predict link existence (Zhang & Chen, 2018). 
The Weisfeiler-Lehman Neural machine (Zhang & Chen, 2017) uses a 
fully connected network that encloses subgraphs for the link prediction 
of target nodes. SEAL (Zhang & Chen, 2018) also utilizes enclosing 
subgraphs with a GNN to classify whether two central nodes in a sub-
graph have a link. In addition, they emphasize the need to consider some 
node features (e.g., explicit and latent features) in link prediction and 
propose a double-radius node labeling strategy that encodes the node’s 
role and position information. Conversely, neighborhood overlap-aware 
GNNs (Neo-GNNs) (Yun et al., 2021) generalize higher-order heuristic 

features by combining the structural neighborhood overlap-aware in-
formation learned from an adjacency matrix and input node features for 
link prediction. 

3. Methods 

3.1. Theorem on the relationship between SD and graph heuristic methods 

In this section, we present the theoretical justification for under-
standing why standard SD methods can lead to insufficient visual rep-
resentation. Furthermore, we provide insights into a novel SD 
framework that can learn more general and effective higher-order 
heuristics to transfer that knowledge to the student. First, we define a 
generalized CN score to support this. 

Definition 3.1 (Generalized CN). For a weighted and homophilic 
graph G = (V,E) where v ∈ V and E represent nodes and a set of edges, 
respectively, a generalized CN score ̃fCN(i, j) for two nodes (i, j) ∈ V has 
the following form. 

f̃ CN(i, j) =
∑

k∈{V\(i,j)}

qi(k)qj(k) (1)  

where, qv ∈ R|V\(i,j)| is the similarity-based probability distribution for 
node v ∈ (i, j) and the other nodes from the complementary node set 
{V\(i, j)}. The standard CN score fCN(i, j) =

⃒
⃒Γi ∩ Γj

⃒
⃒, where Γv is a set of 

one-hop neighboring nodes for node v, is a special case of the general-
ized CN score when the similarity distribution has binary entries qv(u) ∈
{0,1}, ∀ (u, v) which indicate whether the corresponding nodes (u, v)
have an edge. Next, we describe the connection between standard SD 
methods and the generalized CN defined above. 

Theorem 3.1. With the momentum update rule, the objective of the 
standard SD is equivalent to maximizing the generalized CN score in 
Definition 3.1 between two query nodes in the attributed graph with 
unseen edges, where nodes represent a set of query and key data points. 

θ̂s ≈ argmax
θs

f̃ CN(t, s) (2) 

Fig. 1. Illustration of the proposed H2D method. We used a tuple consisting of bounding box information (dashed square) of an instance (a cell) and a corresponding 
image as the data sample. We fed them to the student (skyblue) and the teacher (pink) encoder, and applied ROI pooling with an MLP prediction layer to embed 
representations. By constructing the attributed graph G with two query and key embeddings from a FIFO queue, we further calculate the final query representations 
that have general higher-order heuristic information of the graph using the GH2E networks. Finally, the parameters of the student and teacher encoders were updated 
by optimizing the KL-divergence loss between the final query representations and by applying the momentum update rule (red arrows). 
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where, θs (θ̂s) is the (optimal) trainable parameter of the student 
encoder and t, and s denote two query nodes, respectively. The proof is 
presented in supplementary material. 

3.2. Discussion for the theorem 

Our theoretical results show that the visual representation of the 
standard SD method is optimized by maximizing the generalized CN 
heuristic in Definition 3.1 between the two query nodes from the student 
and teacher, under the assumption that there exists an inherent link 
between the query nodes. However, this framework has two limitations. 
First, (generalized) CN methods may lead to unsatisfactory results 
because they only involve one-hop neighborhood nodes. It has been 
shown that higher-order heuristic-based methods that consider a wider 
range of neighborhood nodes are more effective in many domains 
(Zhang & Chen, 2018). Second, predefined heuristics such as CN may 
fail to generalize to various domains (Zhang & Chen, 2018). For 
example, it may be inappropriate to use heterophily, which indicates 
that the nodes from different classes are more likely to connect to one 
another, which is widely occurring in real-world data. To alleviate these 
issues, recent state-of-the-art embedding-based methods that automati-
cally learn more general and powerful higher-order heuristics by using 
neural network models such as GNNs have shown prominent results in 
various domains (Yun et al., 2021). Thus, we propose a novel SD-based 
framework that provides knowledge about more effective higher-order 
heuristics for students by utilizing the GNN considering the structural 
information and node features simultaneously. 

3.3. Proposed method: H2D 

Our dataset consists of a set of Nins (= the number of instances) tuples 
{bi,Xi}, ∀ i = 1,…,Nins where bi and Xi denote the bounding-box co-
ordinates and the corresponding image for a target instance (i − th ob-
ject), respectively. A query tuple {b,X} is augmented twice by applying 
independent random transforms, resulting in two different views of the 
sample: {bs,Xs} and {bt ,Xt}. We feed the images (Xs,Xt) to the student 
and teacher encoders, respectively, and the ROI pooling method (Gir-
shick, 2015) is applied to the output feature maps (Fs,Ft) with the 
bounding box information (bs, bt) to obtain their embeddings. With the 
embeddings, the fully connected layer computes the feature vectors with 
fixed length d, and they are further normalized into final embeddings, 
denoted zs and zt. Furthermore, to obtain a consistent and large set of key 
embeddings for better representation learning, we follow prior works 
with the first input and first output (FIFO) queue idea by reusing the 
encoded embedding vectors from the teacher network on preceding 
mini-batches (Abbasi Koohpayegani et al., 2020). For a FIFO data queue, 
we have a set of K key embedding vectors, {zi}

K
i=1, where K is a 

user-defined hyperparameter. 

3.3.1. Attributed graph construction 
While the standard SD methods directly use the embeddings to 

calculate the similarity scores, we define an attributed graph G, where 
nodes correspond to queries, and key embeddings and edges encode 
attribute similarities between the nodes. First, we concatenate the key 
and query embeddings to obtain the node feature matrix Z =

[zt |zs|z1|z2|…|zK]
T
∈ R(K+2)×d. Given the node feature matrix Z, a sym-

metric similarity matrix S ∈ R(K+2)×(K+2) encoding the similarity scores 
between the nodes for G can be calculated as follow: 

S = σ
(
ZZT) (3)  

where, σ(⋅) denotes the sigmoid function. Subsequently, an adjacency 
matrix A ∈ R(K+2)×(K+2) is defined by applying a threshold value of 0.5 to 
S. Finally, we remove the edge between two query nodes(Ats,Ast←0) to 
prevent our model from being exposed to the link existence information, 

resulting in a new adjacency matrix Ac ∈ R(K+2)×(K+2). 

3.3.2. Graph-based higher-order heuristics embedding networks 
Inspired by recent link prediction studies (Zhang & Chen, 2018; Yun 

et al., 2021), we developed a new graph-based higher-order heuristic 
embedding (GH2E) network to learn a better higher-order heuristic in-
formation based on the attributed graph G. The GH2E model consists of 
(1) structural embedding layers that extract graph structural informa-
tion using an adjacency matrix Ac only, and (2) feature embedding 
layers that compute node feature representations based on Ac and node 
input features Z (see Fig. 2). First, the structural embedding layers 
generate structural feature scalars {hstruct

i }
K+2
i=1 for each node i based on 

local information. Specifically, we first calculate the hidden edge rep-
resentations using a two-layer multilayer perceptron (MLP) and perform 
neighborhood aggregation: 

haggr
i =

∑

j∈N i

(
Ac,ijWedge

1
)
Wedge

2 (4)  

where, Ac,ij ∈ {0,1}, ∀ (i, j) indicates whether the corresponding nodes 
have an edge, and N i denotes a set of neighborhood nodes of node i. 
Wedge

1 ∈ R1×d and Wedge
2 ∈ R1×d are trainable parameters. Then, similar to 

edge embedding, we update the aggregated representation using a two- 
layer MLP: 

hstruct
i =

(
haggr

i Wnode
1

)
Wnode

2 (5)  

where, Wnode
1 ∈ R1×d and Wnode

2 ∈ Rd×1 are trainable parameters. Now, 
we have a structural embedding vector hstruct = {hstruct

i }
K+2
i=1 that contains 

the structural information for all nodes in graph G. Furthermore, the 
structural embedding matrix Hstruct ∈ R(K+2)×(K+2) consisting of one-hot 
encoded node structure feature vectors, can be defined by construct-
ing a diagonal matrix with the structural embedding vector hstruct . We 
aggregate the structural information from multi-hop neighboring nodes 
to obtain the final structural information matrix H ∈ R(K+2)×(K+2) as 
follows: 

H = fscale

(
∑L

l=1
βl− 1Al

cH
struct

)

(6)  

where, L denotes the maximum range of the neighborhoods to be 
considered and β is a decaying parameter. fscale is a two-layer MLP that 
controls the scale of output representation. Additionally, a message- 
passing-based GNN encoder consisting of LGNN layers is applied to 
embed node feature representations. These GNN-based models have 
been applied to embed node-level hidden representations by considering 
higher-order interrelationships between nodes with a nonlinear update 
function (e.g., Wl

GNN in Eq. (4)) and an adjacency matrix representing a 
structure of the target graph data. Message propagation is performed by 
aggregating the updated node representations from local neighboring 
nodes for each node and layer, respectively. By recurrently repeating 
this process, higher-order nodal information from L-hop neighborhoods 
can be propagated to embed a target node representation. Formally, 
given the node feature matrix Z1 = Z, the update rule for the GNN 
encoder in layer l is defined as follows: 

Zl+1 = ReLU
(
AcZlWl

GNN

)
(7)  

where, ReLU(⋅) is a rectified linear unit activation function, 
Wl

GNN ∈ Rd×d, ∀ l = 1, 2,…, (LGNN − 1) and WLGNN
GNN ∈ Rd×(K+2) denote the 

trainable parameters in each layer. Finally, we calculate a convex 
combination between the structural embedding H and feature embed-
ding ZLGNN using trainable weight α to derive the output embedding 
matrix:

Q = {qi}
K+2
i=1 as Q = αH + (1 − α)ZLGNN . (8) 
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3.3.3. Loss function and momentum contrast 
The output node embeddings Q from the GH2E are further updated 

to calculate the probability distribution P = {pi}
K+2
i=1 with a temperature 

parameter τ using a softmax function. 

Fig. 2. The illustration of the proposed GH2E framework for an input graph G, including the query nodes for teacher (pink), and student (sky-blue) encoder, 
respectively. In structure-based embedding layers, hidden edge representations are aggregated to get haggr

i for each node i. Then a two-layer MLP is applied to 
calculate the structural information hstruct

i for each node i. The multi-hop aggregation of the structural information is performed by using the decayed multi-hop 
adjacency βl− 1Al

c in order to get the final structural information matrix (H) for each layer l = 1, …, L, respectively. Moreover, GNN layers are applied to get 
feature-based node hidden representations ZLGNN . Finally, we merge these two representations (the structural information H, and the feature-based information ZLGNN ), 
resulting in the output embedding matrix Q. 

Algorithm 1 
Pre-training with H2D.  

input: Initialized teacher encoder Rθt , and student encoder Rθs . Initialized MLP layer f. Initialized K key vectors {zi}
K
i=1. Initialized GH2E network fe ,fn, and fGNN . Decay parameter β. 

Multi-hop layer depth L. Initialized weight α. Temperature parameter τ. Momentum parameter m. Random transformation function T . 
for sampled minibatch {bi,Xi}

N
i=1 do 

for all i ∈ {1,…,N} do # drop the subscript i for simplicity in the loop 
# feature extraction 
augs ∼ T , augt ∼ T # draw two random transformations 
{bs,Xs} = augs(bi,Xi), {bt ,Xt} = augt(bi,Xi) # augmentation 
Fs = ROIpool(Rθs (Xs); bs), Ft = ROIpool(Rθt (Xt); bt) # ROI pooling function ROIpool(⋅)

zs = norm(f(Fs)), zt = norm(f(Ft))

# attributed graph construction 

Z = concat(zs; zt ; {zi}
K
i=1)

T # node feature matrix with concatenate function concat(⋅)
A = threshold(sigmoid(ZZT)) # adjacency matrix (Eq. (3).) 
Ac←remove query edge of A # Ats ,Ast = 0 
# GH2E 
for all node v ∈ {1,…,K+2} do # structure-based embedding 

hstruct
v = fn

(
∑

u∈N v

fe(Ac,vu)

)

# fe in Eq. (4). fn in Eq. (5). 

end for 
Hstruct←diag({hstruct

v }
K+2
v=1 )

H = MHaggr(Hstruct ;Ac, β, L) # multi-hop aggregation MHaggr(⋅) in Eq. (6). 
ZLGNN = fGNN (Ac,Z)# GNN layers in Eq. (7). 
Q = αH + (1 − α)ZLGNN # in Eq. (8). 
# calculate the probability distibution 
P = softMax(Q; τ) # in Eq. (9). 
end for 
L = KL(pt |ps) # mean KL divergence loss 
update all the networks except for the Rθt to minimize L 

update the teacher network using momentum update rule with m in Eq. (10). 
FIFO queue update for the key embedding vector with zt 

end for 
return Pre-trained student encoder Fθ̂s

.  
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pi(j) = − log

(
exp(qi(j))/τ

∑K+2
k=1 exp(qi(k))

/
τ

)

(9)  

where, i, j = 1,2, ...(K + 2). To update the parameters θs of the student 
encoder, we optimized the following KL divergence loss between the 
final query embeddings: L = KL(pt |ps). Because our FIFO queue makes it 
intractable to apply the ordinary gradient-based back propagation to the 
teacher encoder, we use the momentum contrast method, which updates 
the parameters with a moving-average scheme for the teacher: 

θt←mθt + (1 − m)θs (10)  

where, m is a user-defined momentum parameter, and θt are trainable 
parameters of the teacher (He et al., 2020). 

4. Experiments 

4.1. Implementation details 

All our experiments were conducted using one NVIDIA Titan V 12GB 
GPU except for open data analysis (on four GPUs). We selected all hyper- 
parameters by adopting them from the literature or by performing a grid 
search algorithm. PyTorch and TorchVision frameworks were used 
(Paszke et al., 2019). All codes and models in this section are available at 
https://github.com/ForBlindReview1/H2D. Please see supplementary 
material for more details of implementation and dataset. The proposed 
H2D pretraining method is summarized in Algorithm 1. 

4.2. Architecture 

We used the popular Faster RCNN with feature-pyramidal networks 
(FPN) (Lin et al., 2017) as the detector model. The ResNet-50 was used 
as the backbone network, and we adopted it as a teacher and student 
encoder. The resulting feature maps from the FPN-ResNet-50 encoder 
consist of a 256-channel multi-scale output: {P2, P3, P4, P5}. To extract 
fixed-length feature vectors from the multi-scale feature maps of the FPN 
encoder for each instance (object) in the images, we used the ROI 
pooling method with a scale assignment strategy (Lin et al., 2017). We 
extracted a feature map with a fixed spatial extent of 7 × 7 using the 
ROI pooling method, resulting in an output feature vector with a size of 
12,544 (= 7 × 7× 256). Finally, we attached a prediction layer with a 
two-layer MLP to produce the d − lengthed embedding vector, which 
was normalized by its L2-norm. To compare our proposed H2D method 
with state-of-the-art SD methods on weakly supervised pre-training and 
transfer learning, we adapted the unofficial implementation of the other 
state-of-the-art SD methods by replacing the standard single-scale 
feature encoder, which uses a global-average pooling layer with the 
multi-scale FPN encoder using the ROI pooling method. 

5. Results and discussion 

5.1. Comparison with state-of-the-art methods 

To verify the effectiveness of our method, we compared the perfor-
mance of H2D to the four state-of-the-art methods reported in Table 1. It 
can be concluded that the methods with standard contrastive learning 
(MOCO v2) and other knowledge distillation-based methods including 
SD (BYOL, Compress, ISD, and the proposed H2D) consistently surpass a 
baseline method through visual representation learning. Table 1 also 
shows that our H2D method consistently achieves the state-of-the-art 
results on cell detection tasks, which indicates that using graph-based 
higher-order heuristic learning is beneficial for visual representation 
learning. Examples of cell detection using our proposed framework are 
shown in Fig. 3. 

5.2. Effect of higher-order heuristics learning 

To show that our GH2E can learn a general and powerful higher- 
order heuristic features compared with various existing graph heuris-
tics, we performed pre-training with the modified GH2E, and compare 
the results to the original H2D. Given an attributed graph G with key, 
query nodes and their attributed adjacency Ac, our GH2E first extract 
hidden edge embedding by using the 2-layer MLP (fe(⋅), Eq. (4)), then 
node-level encoder, fn(⋅) (Eq. (5)), outputs a hidden structural node 
embedding by applying the two-layer MLP to the aggregated edge em-
beddings for node i: 

hstruct
i = fn

(
∑

j∈N i

fe
(
Aij
)
)

, (11) 

Note that it is possible to learn a generalized higher-order heuristic 
features, and even the other heuristics can be generated by using this 
mechanism. For example, if fe(x) = x (identity function), and fn(x) = 1 
(constant function), and if we used only structural embedding for the 
output distribution (α = 1), the KL-divergence objective of the standard 
SD mechanism can be treated as the maximization of standard CN score. 
Similarly, we replace the MLP layers with fe(x) = x, and fn(x) = 1/log(x)
respectively to imitate the structural features for the AA, and addition-
ally, set L ≥ 2 and decay parameter β < 1 with same setting as standard 
CN to imitate the Katz, as the standard high-order heuristic. As shown in 
Table 2, we find that our proposed H2D benefits more than other 
existing heuristic methods. We further show the influence of the number 
of aggregation layers and decay parameter in supplementary material. 

5.3. Effects of graph structure and node features 

Our proposed H2D adopts the GH2E network, which calculates 
general higher-order heuristic information based on the graph structure 
and node features to learn rich visual representations. We conducted 
experiments on various configurations of the GH2E model to demon-
strate how they influence the detection performance. As demonstrated 
in Table 3, H2D without structural information performs worse than the 
standard SD methods. This is in line with many recent link-prediction 
studies (Zhang & Chen, 2018; Yun et al., 2021), indicating that struc-
tural information is crucial for embedding meaningful heuristics. 
Interestingly, the H2D method considering only structural information 
(without node features) also yields poor performance, suggesting that 
using them together can improve representation learning. 

Table 1 
Results of comparison with state-of-the-art SD methods on a cell detection 
dataset (mean ± deviation). Rand. init. initializes the backbone from the scratch. 
Bold denote the best performances.  

Method  Seed 1 Seed 2  
mAP mAP50 mAR mAP mAP50 mAR 

Rand. Init.  84.9 
±

11.5 

95.8 ±
8.2 

89.4 
± 6.6 

84.9 
±

11.5 

95.8 ±
8.2 

89.4 
± 6.6 

MOCO-v2 (He 
et al., 2020)  

86.5 
±

12.2 

95.5 ±
10.0 

89.6 
± 8.9 

87.0 
±

11.1 

96.1 ±
9.0 

90.6  
± 7.2 

BYOL (Grill et al., 
2020)  

86.6 
±

11.0 

96.1 ±
8.1 

90.5 
± 6.6 

86.8 
±

10.3 

96.1 ±
7.7 

90.4 
± 6.8 

Compress (Abbasi 
Koohpayegani 
et al., 2020)  

87.0 
±

12.1 

95.9 ±
10.3 

90.3 
± 8.5 

86.6 
±

11.1 

96.3 ±
8.6 

89.7 
± 8.0 

ISD (Tejankar 
et al., 2021)  

87.6 
±

11.8 

96.4 ±
9.6 

90.4 
± 8.5 

87.0 
±

11.7 

96.1 ±
8.9 

90.4 
± 8.2 

H2D (ours)  87.6  
± 
10.6 

96.7  
± 7.8 

90.9  
± 7.1 

87.1  
± 
11.1 

96.6  
± 7.8 

90.6 
± 7.5  
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We also conducted experiments with various hyperparameters for 
the GH2E network and report the results in Table 4. For the node feature 
analysis, we can observe that the GNN consisting of two layers works the 
best. We suspect that this result might be caused by the over-smoothing 
issue, which means that the GNN causes node representations to 
converge to indistinguishable values with an increase in network layers 
(Li et al., 2019; Zhao et al., 2018). Moreover, for the case of structural 
information, considering up to 3-hop neighborhoods (L = 3) with a 
decay parameter β of one achieves the best performance, as shown in 
Fig. 4. To represent structural information for target node, our GH2E 
iteratively aggregate the hidden features of neighboring nodes. The 
effective range of nodes that a node’s feature draws from is heavily 

Fig. 3. Cell detection results using our proposed method, H2D, for example classes including (A) basophil, (B) chronic lymphocytic leukemia, (C) reactive 
lymphocyte, (D) monocyte, and (E) splenic marginal zone lymphoma. Blue and red boxes denote bounding boxes for ground truth, and prediction, respectively. 

Table 2 
Results of comparison with other heuristic methods on a cell detection dataset 
(mean ± standard deviation). Bold denote the best performances.  

Method mAP mAP50 mAR 

CN 86.7 ± 11.7 95.7 ± 9.8 90.2 ± 7.8 
AA 87.2 ± 12.0 95.9 ± 10.0 90.5 ± 7.1 
Katz 87.4 ± 10.5 96.2 ± 8.2 90.8 ± 6.3 
H2D (ours) 87.6 ± 10.6 96.7 ± 7.8 90.9 ± 7.1  

Table 3 
Effects of structural and feature embedding layers on H2D. Bold denote the best 
performances.  

Method Structure embedding Feature embedding mAP 

H2D  o 86.5 ± 11.7 
o  86.7 ± 10.6 
o o 87.6 ± 10.6  

Table 4 
Effect of number of GNN layers. Bold denote the best performances.   

1 2 3 4 

mAP 86.6 ± 11.6 87.6 ± 10.6 86.8 ± 12.2 87.3 ± 10.0  
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affected by graph structure with the expansions of a random walk 
manner (Xu et al., 2018). Thus, depending on the structure of local 
subgraph, too rapid expansion of the effective range may lose infor-
mation via averaging. We suspect that this may results in a performance 
drop when increasing L to 4. 

5.4. Open dataset experiments 

To test whether our proposed method can be successfully applied to 
more general cases, we conducted experiments using the MS COCO and 
Pascal VOC datasets. Details of the implementation are presented in 
supplementary material. We followed the same evaluation metric used 
in Section 5.1 and reported the results in Table 5. Our H2D achieves 47.8 
mAP under IoU=[0.5:0.95], which is best performance among different 
methods (same result as the MOCOv2, and BYOL). And we observe that 
H2D brings clear improvement over the state-of-the-art methods in term 
of strict version of mAP (mAP75, mAP under IoU=0.75), and mAR, 
respectively. We can conclude that these open-dataset results show the 
generality of the H2D method. 

6. Conclusion 

Despite sufficient progress, future work should explore other higher- 
order heuristic embedding networks because our GH2E requires O(|E|)
space and computational complexity, limiting the number of queue sizes 
K to a relatively small value. This differs from other SD methods that use 
a large dictionary queue (K = 128k). Fortunately, the small dictionary 
queue (K = 64 or K = 96) was successfully applied to the blood smear 
data, Pascal VOC, and MS COCO image datasets because they have small 
class categories (N≤80). However, to adapt to larger databases, such as 
ImageNet (1000 categories) (Russakovsky et al., 2015), there is a need 
for a more efficient higher-order heuristic embedding network. 

In this study, we analyze the limitations of standard SD methods and 
propose a novel knowledge distillation method, namely H2D. Instead of 
simply calculating the existing higher-order heuristics or the similarity 
distributions, we allow H2D to transfer the knowledge about more 
general and powerful higher-order heuristic embeddings to the student 
by utilizing the GNN-based GH2E model on the constructed attributed 
graph. Our extensive experiments show that the proposed H2D method 
can learn rich visual representations compared to previous state-of-the- 
art SD methods. We hope that H2D will inspire future relational 
research, such as knowledge distillation and contrastive learning. 
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